“HDAC expression and activity is upregulated in disease lupus-prone mice,” Co-Author, *International Immunopharmacology*

**Abstract**
Prior studies have shown that pan-HDAC inhibition can decrease disease in lupus mice; however, the mechanisms(s) remain to be elucidated. MRL/MpJ-Faslpr (MRL/lpr) mice develop a lupus-like disease characterized by anti-dsDNA production, lymphoproliferation, and immune complex-mediated glomerulonephritis. Early- and late-disease (12 and 20 weeks-of-age respectively) female MRL/lpr mice were compared to age-matched, healthy C57BL/6 mice for HDAC expression and activity in bone marrow (BM) B cells, splenic B and T cells, and glomerular cells. We found that HDAC6 was significantly overexpressed in B cells, splenic T cells and glomerular cells, whereas HDAC9 expression was significantly increased in splenic T cells, BM B cells and glomerular cells. Due to the overexpression of HDAC6, we tested whether treatment with a selective HDAC6 inhibitor (ACY-738) or a pan-HDAC inhibitor (TsA) would decrease HDAC activity. ACY-738 significantly reduced cytoplasmic HDAC activity whereas TsA significantly decreased both nuclear and cytoplasmic HDAC activity. In vitro studies in mesangial cells showed that ACY-738 increased α-tubulin and Hsp90 acetylation resulting in decreased nuclear activation of NF-κB. Treatment of pre-B cells with ACY-738 decreased the Bcl-2:Bax ratio leading to a pro-apoptotic environment. These results suggest that increased HDAC6 expression and activity contribute to SLE pathogenesis, and isoform-selective HDAC inhibitors may prove beneficial in the treatment of SLE by acetylating key signaling and transcription factors in inflammation and cell activation.
Related People

Nicole L. Regna, Ph.D.
Associate
Winston-Salem, NC
t 336.607.7471
nregna@kilpatricktownsend.com